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ABSTRACT 

In recent years work at the Air Force Research Laboratory Air Vehicles Directorate has focused on pursuing 
active flow control (AFC) devices for achieving better weapons bay control with regard to acoustic loads 
reduction and weapon separation characteristics than the control offered by passive devices (spoilers).  This 
paper describes the “Long Range Strike Aero Experiment” which was a systematic study that pursued AFC 
actuators integrated in a 10%-scale weapons bay model representative of a Long Range Strike Aircraft 
configuration.  Results are presented from acoustic testing, grid testing with force-balance and pressure 
instrumented weapon models, and drop testing.  Based on these measurements, conclusions are drawn with 
regard to the physical processes that characterize high-speed weapon release from a bay without and with 
active flow control.     

1.0 INTRODUCTION 

The Long Range Strike Aero Experiment (LRSAe) was a program conducted from April 2002 through 
September 2003 by the Boeing Phantom Works under contract to the Air Force Research Laboratory (AFRL), 
Contract F33615-00-D-3052, D.O. 23.  The objective of this work was to characterize the flow field 
environment and to identify the requirements of acoustic and flow enhancement devices for the safe release of 
weapons from a bay in the flight-speed range between Mach 2 and 4.  The technology developed under this 
program is intended to be ultimately transitioned to the Long Range Strike Aircraft (LRSA). 

Traditional weapon dispense from bays uses spoilers for modifying the bay shear layer to reduce acoustic 
levels within the bay and enhance characteristics of weapon departure from the bay.  However, spoilers have 
the disadvantage of not having acceptable performance over a wide range of flight conditions, so attention at 
the Air Force Research Laboratory Air Vehicles Directorate has focused in recent years on pursuing active 
flow control devices for achieving more robust weapons bay control than that offered by passive devices.  The 
need for enhanced weapons bay flow control is more crucial for high speed weapon release (Mach 2 to 4), and 
the LRSAe program has addressed this need by performing a series of experiments using advanced flow 
control actuators and measurement techniques to provide the needed technology. 

Paper presented at the RTO AVT Symposium on “Functional and Mechanical Integration of Weapons and Land 
and Air Vehicles”, held in Williamsburg, VA, USA, 7-9 June 2004, and published in RTO-MP-AVT-108. 
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The Boeing performance on the Long Range Strike Aero Experiment drew heavily on Government furnished 
property made available through a DARPA program “High-Frequency Excitation Active Flow Control for 
Supersonic Weapons Release” (HIFEX).  The HIFEX work considered simply shear layer control in a 
weapons bay at Mach 2.5.  The LRSAe program expanded the scope of flow control for high-speed weapon 
release by looking at control of the weapon after it departs the bay shear layer.  Moreover, the LRSAe 
program has tested the HIFEX shear layer control technology at higher Mach numbers (3.2 to 3.7) and 
provided weapon drop tests for the various HIFEX active flow control actuators. 

In addition to being complementary to HIFEX, the Long Range Strike Aero Experiment was also a companion 
program to the AFRL “Long Range Strike Weaponization” program (LRSW).  The goal of the latter ongoing 
program is to investigate high-speed weapon dispense techniques other than those using traditional bays (such 
as upward and aft ejection) and then to test the most promising concepts.  The active flow control work 
supported under LRSAe is a concept also pursued by the LRSW work, and the experimental data base 
provided by LRSAe offers extensive measurements that can be used to benchmark the computational fluid 
dynamics codes that will be used in LRSW studies. 

2.0 WEAPONS BAY MODEL AND FLOW CONTROL ACTUATORS 

A 10%-scale weapons bay model (based on a representative Long Range Strike configuration) and a variety of 
flow control actuators were used in LRSAe testing as Government-furnished hardware from the HIFEX 
program.  The HIFEX weapons bay model has a length of 20 inches and a width of 4 inches.  In its full depth 
configuration it is 4 inches deep; however, an insert can be placed in the bay, which reduces the depth to two 
inches.  The bay can be instrumented with three dynamic pressure transducers along the ceiling. five on the 
rear wall, and six on the upstream wall and with static pressure taps as well.  Installation of the weapons bay 
in the Boeing Polysonic Wind Tunnel (St. Louis) is illustrated in Fig. 1. 

Through its modular design, the HIFEX weapons bay can be fitted with a variety of actuators.  Those made 
available to the LRSAe program from HIFEX work are the powered resonance tube, a jet screen, and 
supersonic microjets.  Each of these control devices offers unique attributes for high-speed weapon release 
and was the subject of considerable testing in the LRSAe program. 

The powered resonance tube device was developed by Boeing and the Illinois Institute of Technology [1] and 
has been successfully used in a variety of tests for noise suppression of free and impinging jets and for 
weapons bay acoustic suppression at transonic conditions.  The device is based on the principle of high-
frequency excitation, which departs from the conventional philosophy of exciting the shear layer only within 
the range of frequencies where large-scale structures are amplified.  The rationale in the conventional 
excitation approach is to energize the large structures that in turn enhance mixing.  In contrast, when 
frequencies that are an order of magnitude higher than the large-scale range are used, the dissipative scales are 
excited, which in turn can bring about large changes in the development of the large scales and the mean flow 
[2].  An important consequence of the high-frequency excitation is that the direct addition of dissipative scales 
apparently accelerates the dynamics of energy cascade across a broad range of wave numbers.  In simulations 
involving resonant acoustics, low-frequency excitation reduces the amplitude of resonant tones by detuning 
the feedback loop.  In contrast, high-frequency excitation destroys the organization of the initial shear layer 
that is necessary to sustain flow-induced resonance. 

The powered resonance tube (PRT) is a simple device with no moving parts for producing acoustic levels in 
excess of 160 dB in a frequency range from 500 to 15,000 Hz.  The device is based on a pressurized air stream 
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from a nozzle directed into a tube with the downstream end closed off. This creates the flow resonance and the 
expulsion of fluid from the tube, which is injected into the shear layer to be controlled.  Various parametric 
studies have been performed on the resonance tube to determine the optimum configuration, and it was found 
that a bank of powered resonance tubes (PRTB) is the most effective device.  Further optimization studies 
were performed to look the effects of varying the diameter of the tubes, the spacing between the tubes, and the 
operating pressure of the devices.  Figure 2 illustrates a powered resonance tube bank (8 tubes) installed in the 
HIFEX weapons bay model. 

The jet screen is a flow control device suggested by AFRL for use in the LRSAe program.  It injects 
pressurized air normal to the flow surface though a narrow slit upstream of the weapons bay leading edge and 
extending the width of the bay.  The slit has a width of either 0.03 inches or 0.07 inches.  The advantage of 
this method is that in addition to providing shear layer control, it can also provide shock control.  That is, a 
shock can be generated upstream of the bay which extends near the weapon and turns the flow to correct the 
weapon attitude and prevent the weapon from striking the parent aircraft.  The jet screen installed in the 
HIFEX weapons bay model is illustrated in Fig. 3. 

The final HIFEX actuator is the supersonic microjet, a device developed at Florida A&M/Florida State 
University and described by [3].  Small (0.016-inch diameter) jets are embedded at the leading edge of the 
bay, either in the plane of the bay opening or in the front face of the bay.  The inclination of the jets with 
regard to the surface normal was also varied, with angles of 90 degrees or 45 degrees relative to the flow.  The 
basis for the effectiveness of the microjets is that they destroy the spanwise coherence of the instabilities 
generated in an open weapons bay.  Figure 4 illustrates the installation of the microjets in the HIFEX weapons 
bay model.     

3.0 LONG RANGE STRIKE AERO EXPERIMENT TESTING 

The Long Range Strike Aero Experiment consisted of weapons bay acoustic testing, shock generation studies, 
force-and-moment grid testing with a 10%-scale MK-82 JDAM model, and MK-82 JDAM weapon drop tests.   
Free stream Mach numbers ranged between 2 and 3.  As part of this testing, particle-image-velocimetry and 
high-speed video imaging systems were used to acquire data for better interpretation of the weapon release 
characteristics.  All tests were conducted in the Boeing Polysonic Wind Tunnel (PSWT) in St. Louis, which 
has a 4 ft X 4 ft test section with a Mach number range from 0.3 to 5.05 and a Reynolds number range of 1 to 
48 million per foot.    

3.1 Acoustic tests 
Acoustic testing in the LRSAe program was the first opportunity to test the active flow control actuators over 
a range of Mach numbers.  Although the testing was directed to evaluating the capability of the actuators to 
reduce the sound pressure levels in the bay, it was also felt that reducing the flow unsteadiness would also 
have a beneficial effect on achieving effective weapon release characteristics as well.  Therefore, the acoustic 
testing served as a screening of the actuators prior to the subsequent grid testing with a sting-mounted weapon 
for quantifying the forces and moments on the weapon in proximity to the bay shear layer. 

The first LRSAe acoustic entry took place in the Boeing PSWT in June and July of 2002.  The weapons bay 
model was tested as a shallow bay, and for this configuration only the supersonic microjets were effective in 
reducing the bay tones.  The second LRSAe acoustic entry took place in the Boeing PSWT in October and 
November of 2002.  In this entry the weapons bay model was tested in the deep-bay configuration, which is 
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more representative of the bay on the Boeing Long Range Strike Aircraft.  Actuators chosen for testing were 
three optimized powered-resonance-tube (PRT) devices, one “splash” actuator (SA, a PRT with the receiving 
tubes closed), two microjet devices (MJ), and one jet-screen device (JS).  Air to the flow control devices was 
applied at various pressures.  Representative results obtained with two of these devices are shown in this 
section. 

The effect of the powered resonance tube denoted PRT1 on the acoustic levels in the bay at Mach 2.5 is 
shown in Fig. 5 at various locations on the trailing edge and the ceiling of the bay.  The plots show the 
baseline (no control) levels as well as the levels with control.  At all locations the device dramatically reduces 
the levels of the tones in the deep bay.    

The ability of the microjet configuration denoted MJ1 to control weapons bay acoustic levels at Mach 2.5 is 
shown in Fig. 6 at the various trailing edge and ceiling positions.  The microjets provided substantial reduction 
in the sound pressure levels.  Similar reductions were also obtained with the SA and JS devices.  Figure 7 
shows the baseline and controlled spectra in the bay for the MJ1 microjet configuration when the free stream 
Mach number was raised to 3.2. Again, the actuators were effective in reducing the tones, although the levels 
for the uncontrolled bay diminish with increasing Mach number. 

3.2 Shock Generation Tests 
One objective of the LRSAe program was to purse control shock actuators as a means of adjusting the attitude 
of a weapon after it departs the bay shear layer.  The basis of this approach is to generate a shock wave in the 
vicinity of the weapon, which turns the flow and modifies the weapon pitching moment.  To determine the 
potential and efficiency of this method, the June-July and October-November 2002 LRSAe wind tunnel 
entries had segments devoted to shock control.  In the first entry particle-image velocimetry (PIV) was used to 
measure the flow in the vicinity of the control shocks, and in the second entry grid testing with a weapon 
model containing a force balance was used to measure the control authority of the generated shock waves. 

In the June-July entry, both mechanical and fluidic means were evaluated for generating the control shock.  
The former used pins and wedges of varying heights that could be positioned on the weapons bay model 
upstream of the bay.  However, these devices proved to be ineffective since the generated shock was cancelled 
by a downstream expansion fans.  The fluidic approach used the jet screen located upstream of the bay 
opening and was found to be an effective shock generator. 

 To quantify the strength of the shock wave generated by the jet screen, PIV was used in the Boeing PSWT to 
measure the velocity field upstream and downstream of the shock.  Although a Schlieren system will show the 
position of the shock in the flow, it, of course, does not provide velocity levels, as does PIV.  To set up an 
operational PIV system in a blow-down wind tunnel is a challenging task, and the LRSAe application was the 
first time such measurements were made.  The particle-image velocimetry was performed by Integrated 
Design Tools, a Boeing subcontractor on the program.  A major challenge was providing seeding in the blow-
down facility, and this was achieved using injectors in the plenum that put seeding particles (RUSCO fluid) 
into the test section.  Adequate seeding was achieved in the flow external to the bay.  However, reflections of 
the laser beam off the weapons bay model caused a glare problem that prevented velocity measurements close 
to the bay surface.  The control actuator used to generate the shock waves for the PIV measurements was the 
jet screen device.  Figure 8 shows the PIV image of the jet screen operating at 150 psig with a Mach 2.5 free 
stream.   
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Under the HIFEX program, attempts were made to measure the velocity distribution within the weapons bay 
model.  This was first attempted using a transparent ceiling with the recording cameras located outside the 
wind tunnel.  Sufficient optical access was not possible with this approach.  Therefore, the weapons bay 
model was modified to embed four short-focal-length cameras adjacent to the bay with transparent side walls.  
Difficulties were obtained in properly seeding the bay flow, so the measurements were not successful.  
Nevertheless, the LRSAe and HIFEX programs have contributed to the development of the technology for 
making velocity measurements in weapons bays.  Such measurements are an important diagnostic tool to have 
when evaluating the effects of active flow control on weapons integration. 

3.3 Force/Moment Model Grid Tests 
Force/moment grid testing was pursued in the LRSAe program in order to see how the flow control devices 
that were successful in acoustic suppression modified the pitching moment on a weapon as it departed the bay.  
To conduct this segment of the testing, a 10%-scale MK-82 JDAM model with an installed balance was 
designed and fabricated.  The model was positioned on a traversing arm that could be moved below the 
weapons bay for measurements of forces and moments on the weapon model.  This approach did not allow an 
extensive traverse of the weapon in the streamwise or lateral positions.  Moreover, there was no capability for 
varying weapon pitch angle.  Nevertheless, the present approach did give sufficient force and moment data to 
make judgments regarding the effectiveness of the active flow control actuators in modifying the weapon 
separation characteristics from the bay. 

The traversing mechanism is mounted at three x-axis (streamwise) positions along the bay.  The configuration 
is shown in Fig. 9.  The forward bay position is denoted G1; the mid-bay position is denoted G2; and the aft 
bay position is denoted G3.  There is a single y-axis (lateral) position.  A range of ten inches of motion is 
allowed in the z-axis (normal) direction.  Travel of the traversing sting starts at a weapon home position 
within the bay for tunnel start-up and shut-down.  The arm can be moved to multiple points along its full 
range of travel without pausing for data acquisition.  However, the capability also exists to pause the arm at 
discrete positions.  The traversing arm is capable of moving through a predetermined range at varying 
velocities to allow continuous data acquisition for 70 to 120 seconds of tunnel run time.  The 10%-scale 
weapon model used in the grid tests was a MK-82 JDAM, also shown in Fig. 9.  The model consists of a four-
piece body with a nose, nose adapter, centerbody, and aftbody.  In order to gain greater insight into the flow 
characteristics affecting the weapon, a temporary Schlieren system was set up in the Boeing PSWT to 
visualize the shock system associated with the weapon, bay, and fluidic actuators.    

Shear-layer-control actuators used in the grid testing were those that performed the best in the acoustic testing.  
These included a powered resonance tube, the splash actuator, the jet screen, and a microjet array.  For 
comparison a spoiler was also fabricated for use as a passive device.  Grid testing was done at Mach 2.5 and 
3.2 for the weapon external to the bay shear layer. 

Figure 10 provides a representative comparison of the actuators for the grid traverse at the mid-bay (G2) 
position and at the Mach 2.5 condition.  The baseline case shows a nose-up moment on the weapon as it 
passes through the bay shear layer.  With the microjet actuator array, this positive Cm value is sustained.  
With the PRT the pitching moment is near zero down to z = 6 cm, and a similar result was obtained with the 
SA. With the jet screen initially a near-zero Cm exists, but the pitching moment increases to 0.5 before going 
negative.  Figure 11 shows the results obtained with the microjet and PRT combined with the jet screen.  Both 
of these combinations indicate acceptable weapon release characteristics.  The spoiler provided acceptable 
release characteristics from the G2 position but not from the G1 position.  When the free stream Mach number 
is raised to 3.2, at the mid-bay traverse location the baseline results show a positive Cm on the weapon as it 
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passes through the shear layer.  As for the lower Mach number case, the microjet/jet-screen and PRT/jet-
screen combination show acceptable pitching moment characteristics. 

3.4 Drop Tests 
The LRSAe grid tests provided useful insights into how the active flow control actuators affected the weapon 
separation characteristics as reflected by the weapon pitching moment.  However, a more definitive measure 
of the benefits of flow control was desired, so drop tests were conducted in the Boeing PSWT in which MK-
82 weapon models were dispensed from the bay.  This testing took place over two entries, one in December 
2002 and one in March 2003.  The first entry focused on only release from the forward and mid-bay positions 
at Mach 2.5 and consisted of 12 drops.  The second entry focused on Mach 3.2 release from all bay positions.  
The results from both of these tests demonstrated the robustness of the model-scale flow control approach as a 
means of achieving high-speed weapon dispense from a bay. 

One issue that arises in weapon drop tests is how to scale the weapon so that model scale results can be used 
to interpret full-scale results.  Light scaling was used in the LRSAe testing, where the relative importance of 
weapon weight is decreased compared to the aerodynamic and ejector forces.  As a result of this, with regard 
to similarity variables the weapon will tend to be closer to the aircraft for a longer time than would be 
experienced in flight.  For this reason, the light scaling is conservative.  That is, if safe separation occurs with 
a light-scaled weapon model, then a safe separation with the full-scale weapon is essentially certain.  In the 
LRSAe portions of the drop testing, all weapon models were light scaled.  For the drop tests the 10%-scale 
MK-82 JDAM models were fabricated by the stereo-lithography process and contained 7075-T6 aluminum 
parts and Mallory 1000 weights.  An ejector system was installed in the weapons bay for the drop testing 
could be located at any of the three weapon release stations.  The ejector is a spring-based system operated 
with a burn bolt.  Various springs are available in order to set the ejector force variations. 

To record the weapon trajectories, the Boeing subcontractor Instrumentation Marketing Corporation (IMC) 
provided high-speed (1000 to 2000 frames/sec) video imaging of the weapon drops.  In acquiring the video 
images, two different approaches were used.  The first was direct illumination, in which target markers were 
placed on the weapon to allow accurate definition of the weapon dynamics during the release using IMC 
software (such information as weapon center-of-gravity trajectory and pitch angle).  The second approach was 
recording Schlieren images of the weapon drop, which had the advantage of showing the complex shock 
system in the flow.  However, in this approach the target markers are not visible, so the weapon trajectories 
and pitch angle had to be constructed using identifiable geometric characteristics of the weapon in applying 
the analysis software. 

The first drop test entry took place in the Boeing PSWT in December 2002 and considered twelve MK-82 
JDAM models dispensed from the forward and mid bay positions.  Confirming the grid test results, the drop 
tests showed that all actuators (powered resonance tube, splash actuator, and jet screen) provided a clean 
release of the weapon from the forward and mid bay positions (aft release was not tested).  The microjet array 
alone was ineffective. 

The second drop test entry took place in the Boeing PSWT in March 2003.  Its objective was to check the 
robustness of the flow control actuators, to determine if additional weapon stabilization was required, and to 
minimize the actuator mass flow consumption to meet the bleed flow limitations of the aircraft propulsion 
system.  The drop tests conducted at Mach 2.5 (HIFEX program) and 3.2 (LRSAe program) showed that a 
“tandem actuator” provided the best weapon separation characteristics at both Mach numbers.  The tandem 
system consisted of a microjet array at the bay leading edge and another at the jet screen position.  Figure 12 
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shows sequences from the controlled departure at Mach 3.2.  Without flow control, the weapon model 
returned to the bay at both positions and at both Mach numbers. Acceptable weapon departure was achieved 
without control at the aft bay position for both Mach numbers.  The flow rates required by the tandem system 
fell within the limit obtained by scaling down the aircraft bleed flow availability.  Therefore, the tandem 
microjet array was selected as the actuator of choice for the high-speed weapon release problem. 

3.5 Pressure-Instrumented Model Grid Tests 
In July 2003 a grid test with a pressure-instrumented MK-82 JDAM model was conducted in the Boeing 
Polysonic Wind Tunnel.  The goal of this test was to acquire pressure data on the weapon model as it passed 
through and below the HIFEX weapons bay model shear layer to explain the processes that occur without and 
with flow control.   

For the baseline or no-control case, a violent buffeting condition is created in the weapons bay by the motion 
of the amplifying large-scale structures that are convected in the shear layer at a Mach number of 1.25 for the 
Mach 2.5 free stream condition.  While having no appreciable effect on the trajectory of the weapon model 
while it is inside the bay or passing through the shear layer, this condition produces a strong nose-up moment 
while the weapon is in the near-field region.  The tentative explanation for the baseline behavior lies in 
considering the large eddies in the shear layer as a wavy wall moving at the convection Mach number 1.25 
with respect to the shear layer structures.  It is proposed that the system of waves moves at Mach 1.25 relative 
to the shear layer structures.  These waves traverse the essentially stationary weapon model, creating an 
increasingly strong pressure footprint on the rear portion of the weapon model because the structures grow 
with streamwise distance through vortex pairing.  Therefore, the shocks generated by these structures increase 
in the streamwise direction.  These conclusions are supported by the detailed static and dynamic pressures 
acquired by dynamic pressure transducers distributed over the length of the weapon model (Fig. 13).  With 
control applied, the structures and shocks they generate are suppressed.  This results in clean departure of the 
weapon model from the bay as observed in the wind tunnel drop tests.     

4.0 SUMMARY 

The Long Range Strike Aero Experiment has provided an extensive database for validation of prediction 
methods that will be applied in evaluating weaponization concepts for the Long Range Strike Aircraft.  This 
database includes acoustic spectra, grid force-and-moment model data, particle-image-velocimetry data, high-
speed weapon release videos and photogrammetric results, and grid pressure-instrumented model data. 

The program, in conjunction with the DARPA program “High-Frequency Excitation Active Flow Control for 
Supersonic Weapons Release”, has demonstrated at model-scale the safe weapon release from a conventional 
bay at Mach numbers from 2.5 to 3.2.  This approach has been shown to have a robustness that is not found 
with a conventional spoiler at the conditions tested. 

The active flow control technology originating from the LRSAe and HIFEX programs will ultimately be 
tested at full scale in 2005 at the Holloman AFB High Speed Test Track under HIFEX funding.  Such a test 
would be a preliminary step toward a flight test demonstration of the active flow control high-speed weapon 
release concept. 
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Figure 1:  10%-Scale HIFEX weapons bay model installed in Boeing Polysonic Wind Tunnel 

 

 

 

 

Figure 2:  Powered resonance tube bank located upstream of the HIFEX weapons bay 
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Figure 3:  Jet screen slot (0.030 inch  x  4 inches) located upstream of the HIFEX weapons bay 

 

 

 

Figure 4:  Microjet arrays located upstream of the HIFEX weapons bay 
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Figure 5:  Effect of powered resonance tubes (PRT1) on sound pressure levels in the HIFEX 
weapons bay (Mach 2.5) 
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Figure 5:  (concluded) 
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Figure 6:  Effect of Microjets (MJ1, 100 psig supply pressure) on sound pressure levels in the HIFEX 
weapons bay (Mach 2.5). 
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Figure 7:  Effect of Microjets (MJ1, 100 psig supply pressure) on sound pressure levels in the HIFEX 
weapons bay (Mach 3.2) 
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Figure 7:  (concluded). 
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Figure 8:  Velocity field in vicinity of HIFEX weapons bay  
with jet screen operating at 150 psig (Mach 2.5) 
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Figure 9:  Arrangement of HIFEX weapons bay and MK-82 JDAM models for grid testing in the 
Boeing Polysonic Wind Tunnel 



Active Flow Control for High-Speed Weapon Release from a Bay 

30 - 18 RTO-MP-AVT-108 

UNCLASSIFIED/UNLIMITED 

UNCLASSIFIED/UNLIMITED 

 

Figure 10:  Pitching moment vs. weapon location for mid-bay position  
at Mach 2.5 (MJ, PRT, and JS actuators) 

Red line: cm vs. z (without 
control) 
Blue line: cm vs. z (with control) 
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Figure 11:  Dynamic pressures recorded on weapon model in mid-bay grid survey (top:  weapon in 
initial grid position; bottom:  weapon at grid position before encountering actuator-generated shock) 
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Figure 11 (continued):  Dynamic pressure recorded on weapon model in mid-bay grid survey (top:  
weapon at grid position during passage through actuator-generated shock; bottom:  weapon at grid 

position after clearing actuator-generated shock). 
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Figure 12:  Sequence of high-speed video images for controlled release of MK-82 JDAM model from 
the mid-bay position at Mach 3.2 

Downw
ard
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DISCUSSION EDITING 

Paper No. 30: Active Flow Control for High-Speed Weapon Release from a Bay 
 

Authors:  Dave Schwartz ,Valdis Kibens and William W. Bower 

Speaker: Dave Schwartz 

Discussor: Stephen Perillo and  Eddie Roberts 

Question: How high of an ejection velocity did you try and did you try an asymmetric setting? 

  Have you investigated the effects of pitch rate or attidude on stores hitting the shear layer? 

Speaker’s Reply: Ejection velocities were meant to match the full-scale end-of-stroke velocities of a 
Mk-82 released from a B1-B. 

Ejector bias was set to ensure horizontal release with no angular velocity. This was 
for simplicity. It is important to remember that this technology is still very early in its 
development. 

As above, practical limits prevented us from varying pitch and pitch rate. This will be 
explored as the technology matures. 

Discussor: Ronald Deslandes 

Question: Don´t you think that the drop test results are too pessimistics, because you are neglecting 
more than 90% of the gravitation contribution (89,2m/s2)? 

Speaker’s Reply: The difficulties of high-Mach separation are not unique to my 10%-scale results. Full-
scale problems have been observed on the F-111 in the past. Even external release is 
dangerous above Mach 2. Rail-launched missiles from the SR-71 (YF-12) recontacted 
the aircraft. 

Even if we were being overly conservative, it only shows that we are able to solve  
difficult problem. If we can enhance separation in the light-scaled case, we can be 
even more confident about the full-scale case. 

Discussor: M. Tutty 

Question: The F-111 has been releasing stores for over 40 years with B61 etc. Is consideration being 
given to the design of better shapes than the extremely poor GBU-38 shape which replicated 
the even worse Mk-82 Loop shape. 

Speaker’s Reply: AFRL must respond to customer requirements, which include the  

Mk-82, even for future bomber designs. This model was closer because it should be a 
very common loading and because it should be a very common loading and because 
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of Boeing´s ownership of the JDAM. We hope to expand our weapon selection in 
future tests. 

Air vehicles´ sister directorate, the Munitions Directorate, would be responsible for 
new store designs 
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